Abstract
Given that improved imputation software and high-coverage whole genome sequence (WGS)-based haplotype reference panels now enable inexpensive approximation of WGS genotype data, we hypothesised that WGS-based imputation and analysis of existing ExomeChip-based genome-wide association (GWA) data will identify novel intronic and intergenic single nucleotide polymorphism (SNP) effects associated with complex disease risk. In this study, we reanalysed a Parkinson’s disease (PD) dataset comprising 5540 cases and 5862 controls genotyped using the ExomeChip-based NeuroX array. After genotype imputation and extensive quality control, GWA analysis was performed using PLINK and a recently developed machine learning approach (GenEpi), to identify novel, conditional and joint genetic effects associated with PD. In addition to improved validation of previously reported loci, we identified five novel genome-wide significant loci associated with PD: three (rs137887044, rs78837976 and rs117672332) with 0.01 < MAF < 0.05, and two (rs187989831 and rs12100172) with MAF < 0.01. Conditional analysis within genome-wide significant loci revealed four loci (p < 1 × 10−5) with multiple independent risk variants, while GenEpi analysis identified SNP–SNP interactions in seven genes. In addition to identifying novel risk loci for PD, these results demonstrate that WGS-based imputation and analysis of existing exome genotype data can identify novel intronic and intergenic SNP effects associated with complex disease risk.
Subject
Genetics (clinical),Genetics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献