Spatial Factors Outperform Local Environmental and Geo-Climatic Variables in Structuring Multiple Facets of Stream Macroinvertebrates’ β-Diversity

Author:

Wu NaichengORCID,Liu GuohaoORCID,Zhang Min,Wang Yixia,Peng Wenqi,Qu XiaodongORCID

Abstract

One of the key targets of community ecology and biogeography concerns revealing the variability and underlying drivers of biodiversity. Most current studies understand biodiversity based on taxonomic information alone, but few studies have shown the relative contributions of multiple abiotic factors in shaping biodiversity based on taxonomic, functional, and phylogenetic information. We collected 179 samples of macroinvertebrates in the Hun-Tai River Basin. We validated the complementarity between the three facets and components of β-diversity using the Mantel test. Distance-based redundancy analysis and variance partitioning were applied to explore the comparative importance of local environmental, geo-climatic, and spatial factors on each facet and component of β-diversity. Our study found that taxonomic and phylogenetic total β-diversity was mainly forced by turnover, while functional total β-diversity was largely contributed by nestedness. There is a strong correlation between taxonomic and phylogenetic β-diversity. However, the correlations of functional with both taxonomic and phylogenetic β-diversity were relatively weak. The findings of variation partitioning suggested that distinct facets and components of macroinvertebrates’ β-diversity were impacted by abiotic factors to varying degrees. The contribution of spatial factors was greater than that of the local environment and geo-climatic factors for taxonomic, functional, and phylogenetic β-diversity. Thus, studying different facets and components of β-diversity allows a clearer comprehension of the influence of abiotic factors on diversity patterns. Therefore, future research should investigate patterns and mechanisms of β-diversity from taxonomic, functional, and phylogenetic perspectives.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3