Environmental filtering, spatial processes and biotic interactions jointly shape different traits communities of stream macroinvertebrates

Author:

Liu Guohao,Lin Zongwei,Qi Xinxin,Wang Yixia,Wang Yaochun,Jiang Wanxiang,He Fengzhi,Wu Naicheng

Abstract

The metacommunity concept has been widely used to explain the biodiversity patterns at various scales. It considers the influences of both local (e.g., environmental filtering and biotic interactions) and regional processes (e.g., dispersal limitation) in shaping community structures. Compared to environmental filtering and spatial processes, the influence of biotic interactions on biodiversity patterns in streams has received limited attention. We investigated the relative importance of three ecological processes, namely environmental filtering (including local environmental and geo-climatic factors), spatial processes and biotic interactions (represented by interactions of macroinvertebrates and diatom), in shaping different traits of macroinvertebrate communities in subtropical streams, Eastern China. We applied variance partitioning to uncover the pure and shared effects of different ecological processes in explaining community variation. The results showed that environmental filtering, spatial processes, and biotic interactions jointly determined taxonomic and trait compositions of stream macroinvertebrates. Spatial processes showed a stronger influence in shaping stream macroinvertebrate communities than environmental filtering. The contribution of biotic interactions to explain variables was, albeit significant, rather small, which was likely a result of insufficient representation (by diatom traits) of trophic interactions associated with macroinvertebrates. Moreover, the impact of three ecological processes on macroinvertebrate communities depends on different traits, especially in terms of environmental filtering and spatial processes. For example, spatial processes and environmental filtering have the strongest effect on strong dispersal ability groups; spatial processes have a greater effect on scrapers than other functional feeding groups. Overall, our results showed that the integration of metacommunity theory and functional traits provides a valuable framework for understanding the drivers of community structuring in streams, which will facilitate the development of effective bioassessment and management strategies.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3