Different facets of alpha and beta diversity of benthic diatoms along stream watercourse in a large near‐natural catchment

Author:

Wu Naicheng1ORCID,Liu Guohao1ORCID,Qi Xinxin1,Lin Zongwei1,Wang Yixia1,Wang Yaochun1,Li Yuying2,Oduro Collins13,Khan Sangar13,Zhou Shuchan4,Chu Tianjiang5

Affiliation:

1. Department of Geography and Spatial Information Techniques Ningbo University Ningbo China

2. Henan International Joint Laboratory of Watershed Ecological Security in the Water Source Area of the Middle Route of South‐to‐North Water Diversion Project, College of Water Resource and Modern Agriculture Nanyang Normal University Nanyang China

3. Ningbo University Donghai Institute Ningbo University Ningbo China

4. Ningbo University Library (Journal Editorial Department) Ningbo University Ningbo China

5. Hangzhou Academy of Agricultural Sciences Hangzhou China

Abstract

AbstractUnderstanding the processes and mechanisms that shape the distribution patterns and variations of biodiversity along spatial gradients continues to be a priority for ecological research. We focused on the biodiversity of benthic diatom communities within a large near‐natural watershed. The objectives are: (1) to explore the overall spatial patterns of benthic diatom biodiversity; (2) to investigate the effects associated with watercourse position and environmental variables, as well as both common and rare species on two facets (i.e., taxonomic and functional) of alpha and beta diversity; and (3) to unveil the mechanisms underlying their spatial variations. Alpha diversity indices along the stream watercourse showed a clear increasing trend from upstream to downstream sites. Results of random forest regression identified conductivity as the primary factor influencing functional alpha diversity, while elevation emerged as the predominant factor for taxonomic alpha diversity. Beta diversity partitioning revealed that taxonomic beta diversity generally exceeded functional beta diversity. These diversity measures exhibited different patterns along the watercourse position: taxonomic beta diversity remained relatively consistent along the watercourse, whereas functional total beta diversity and its two components of middle stream sites were lower than those of upstream and downstream sites. Functional beta diversity was sustained by dominant and common species, while rare species made significant contributions to taxonomic beta diversity. Both taxonomic and functional beta diversity and its components displayed a stronger influence from spatial factors than from local environmental, geo‐climatic, and nutrient variables. Collectively, taxonomic and functional alpha and beta diversity demonstrated distinct responses to the main environmental gradients and spatial factors within our catchment, highlighting their different insights into diatom diversity. Furthermore, research is required to assess the generalizability of our findings to similar ecosystems. In addition, this study presents opportunities for expansion to include other taxa (e.g., macroinvertebrates and fish) to gain a comprehensive understanding of the driving mechanisms behind stream biodiversity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3