Abstract
We present the “AI-Atlas” didactic concept as a coherent set of best practices for teaching Artificial Intelligence (AI) and Machine Learning (ML) to a technical audience in tertiary education, and report on its implementation and evaluation within a design-based research framework and two actual courses: an introduction to AI within the final year of an undergraduate computer science program, as well as an introduction to ML within an interdisciplinary graduate program in engineering. The concept was developed in reaction to the recent AI surge and corresponding demand for foundational teaching on the subject to a broad and diverse audience, with on-site teaching of small classes in mind and designed to build on the specific strengths in motivational public speaking of the lecturers. The research question and focus of our evaluation is to what extent the concept serves this purpose, specifically taking into account the necessary but unforeseen transfer to ongoing hybrid and fully online teaching since March 2020 due to the COVID-19 pandemic. Our contribution is two-fold: besides (i) presenting a general didactic concept for tertiary engineering education in AI and ML, ready for adoption, we (ii) draw conclusions from the comparison of qualitative student evaluations (n = 24–30) and quantitative exam results (n = 62–113) of two full semesters under pandemic conditions with the result of previous years (participants from Zurich, Switzerland). This yields specific recommendations for the adoption of any technical curriculum under flexible teaching conditions—be it on-site, hybrid, or online.
Subject
Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation
Reference58 articles.
1. Digital Disruption
2. Robot-Proof: Higher Education in the Age of Artificial Intelligence;Aoun,2017
3. The AI Index 2019 Annual Report;Perrault,2019
4. Introduction to applied data science;Stadelmann,2019
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献