Supporting Decision-Making Process on Higher Education Dropout by Analyzing Academic, Socioeconomic, and Equity Factors through Machine Learning and Survival Analysis Methods in the Latin American Context

Author:

Gutierrez-Pachas Daniel A.1ORCID,Garcia-Zanabria Germain1ORCID,Cuadros-Vargas Ernesto1ORCID,Camara-Chavez Guillermo12ORCID,Gomez-Nieto Erick1ORCID

Affiliation:

1. Department of Computer Science, Universidad Católica San Pablo, Arequipa 04001, Peru

2. Computer Science Department, Federal University of Ouro Preto, Ouro Preto 35400000, Brazil

Abstract

The prediction of university dropout is a complex problem, given the number and diversity of variables involved. Therefore, different strategies are applied to understand this educational phenomenon, although the most outstanding derive from the joint application of statistical approaches and computational techniques based on machine learning. Student Dropout Prediction (SDP) is a challenging problem that can be addressed following various strategies. On the one hand, machine learning approaches formulate it as a classification task whose objective is to compute the probability of belonging to a class based on a specific feature vector that will help us to predict who will drop out. Alternatively, survival analysis techniques are applied in a time-varying context to predict when abandonment will occur. This work considered analytical mechanisms for supporting the decision-making process on higher education dropout. We evaluated different computational methods from both approaches for predicting who and when the dropout occurs and sought those with the most-consistent results. Moreover, our research employed a longitudinal dataset including demographic, socioeconomic, and academic information from six academic departments of a Latin American university over thirteen years. Finally, this study carried out an in-depth analysis, discusses how such variables influence estimating the level of risk of dropping out, and questions whether it occurs at the same magnitude or not according to the academic department, gender, socioeconomic group, and other variables.

Funder

Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3