2D Material Science: Defect Engineering by Particle Irradiation

Author:

Schleberger Marika,Kotakoski JaniORCID

Abstract

Two-dimensional (2D) materials are at the heart of many novel devices due to their unique and often superior properties. For simplicity, 2D materials are often assumed to exist in their text-book form, i.e., as an ideal solid with no imperfections. However, defects are ubiquitous in macroscopic samples and play an important – if not imperative – role for the performance of any device. Thus, many independent studies have targeted the artificial introduction of defects into 2D materials by particle irradiation. In our view it would be beneficial to develop general defect engineering strategies for 2D materials based on a thorough understanding of the defect creation mechanisms, which may significantly vary from the ones relevant for 3D materials. This paper reviews the state-of-the-art in defect engineering of 2D materials by electron and ion irradiation with a clear focus on defect creation on the atomic scale and by individual impacts. Whenever possible we compile reported experimental data alongside corresponding theoretical studies. We show that, on the one hand, defect engineering by particle irradiation covers a wide range of defect types that can be fabricated with great precision in the most commonly investigated 2D materials. On the other hand, gaining a complete understanding still remains a challenge, that can be met by combining advanced theoretical methods and improved experimental set-ups, both of which only now begin to emerge. In conjunction with novel 2D materials, this challenge promises attractive future opportunities for researchers in this field.

Funder

Deutsche Forschungsgemeinschaft

Austrian Science Fund

Vienna Science and Technology Fund

Publisher

MDPI AG

Subject

General Materials Science

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3