Influence of Highly Charged Ion Irradiation on the Electrical and Memory Properties of Black Phosphorus Field‐Effect Transistors

Author:

Sleziona Stephan1ORCID,Kharsah Osamah1ORCID,Skopinski Lucia1ORCID,Daniel Leon1,Schmeink Jennifer1ORCID,Schleberger Marika1ORCID

Affiliation:

1. Faculty of Physics and CENIDE University of Duisburg‐Essen Lotharstraße 1 D‐47057 Duisburg Germany

Abstract

AbstractBlack phosphorus (bP) is one of the more recently discovered layered materials. Utilizing the hysteresis in the transfer characteristics of bP field‐effect transistors (FETs), several approaches to realize non‐volatile memory devices are successfully demonstrated. This hysteresis is commonly attributed to charge trapping and detrapping in impurities and defects whose nature and location in the device are however unclear. In this work, defects are deliberately introduced into bP FETs by irradiating the devices with highly charged Xe30 + at a kinetic energy of 180 and 20 keV to manipulate their electrical and memory properties. The results show for the ion with higher energy an increase of conductance and an increase of p‐doping of up to 1.2 · 1012 cm−2 with increasing fluence, while the charge carrier mobility degrades for the higher ion fluences. Most notably, an increase in the hysteresis' width and of the memory window are observed due to the irradiation. By controlling the kinetic energy of the ions, it can be demonstrated, that the modifications of electronic properties arise from defects in bP and the underlying SiO2 substrate. However, changes in hysteretic properties are attributed exclusively to irradiation‐induced defects in the substrate, so ion irradiation can significantly improve the properties of bP based memory devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3