TEM-processed defect densities in single-layer TMDCs and their substrate-dependent signature in PL and Raman spectroscopy

Author:

Moses Badlyan NarineORCID,Quincke MoritzORCID,Kaiser Ute,Maultzsch Janina

Abstract

Abstract The optical properties of the direct-bandgap transition metal dichalcogenides (TMDCs) MoS2 and WS2 are heavily influenced by their atomic defect structure and substrate interaction. In this work we use low-voltage chromatic and spherical aberration (CC/CS)-corrected high-resolution transmission electron microscopy to simultaneously create and image chalcogen vacancies in TMDCs. However, correlating the defect structure, produced and analyzed using transmission electron microscopy (TEM), with optical spectroscopy often presents challenges because of very different fields of view and sample platforms involved. Here we employ a reverse transfer technique to transfer electron-irradiated single-layer MoS2 and WS2 from the TEM grid to various substrates for subsequent optical examination. The dynamics of defect creation are studied in atomic resolution on a separate sample, which allows to apply the derived statistics to larger irradiated areas on the other samples. The intensity of both the defect-bound exciton peak in photoluminescence (PL) and the defect-induced LA(M) mode in Raman spectra increase with defect density. The best substrates for defect-density determination by optical spectroscopy are polystyrene for PL and SiC and Si/SiO2 for Raman spectroscopy. These investigations represent an important step towards the quantification of defects using solely optical spectroscopy, paving the way for fast, reliable, and automatable optical quality control of optoelectronic devices.

Funder

Deutsche Forschungsgemeinschaft

Carl Zeiss Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3