Lightweight Semantic Segmentation Network for Real-Time Weed Mapping Using Unmanned Aerial Vehicles

Author:

Deng Jizhong,Zhong Zhaoji,Huang HuashengORCID,Lan Yubin,Han Yuxing,Zhang YaliORCID

Abstract

The timely and efficient generation of weed maps is essential for weed control tasks and precise spraying applications. Based on the general concept of site-specific weed management (SSWM), many researchers have used unmanned aerial vehicle (UAV) remote sensing technology to monitor weed distributions, which can provide decision support information for precision spraying. However, image processing is mainly conducted offline, as the time gap between image collection and spraying significantly limits the applications of SSWM. In this study, we conducted real-time image processing onboard a UAV to reduce the time gap between image collection and herbicide treatment. First, we established a hardware environment for real-time image processing that integrates map visualization, flight control, image collection, and real-time image processing onboard a UAV based on secondary development. Second, we exploited the proposed model design to develop a lightweight network architecture for weed mapping tasks. The proposed network architecture was evaluated and compared with mainstream semantic segmentation models. Results demonstrate that the proposed network outperform contemporary networks in terms of efficiency with competitive accuracy. We also conducted optimization during the inference process. Precision calibration was applied to both the desktop and embedded devices and the precision was reduced from FP32 to FP16. Experimental results demonstrate that this precision calibration further improves inference speed while maintaining reasonable accuracy. Our modified network architecture achieved an accuracy of 80.9% on the testing samples and its inference speed was 4.5 fps on a Jetson TX2 module (Nvidia Corporation, Santa Clara, CA, USA), which demonstrates its potential for practical agricultural monitoring and precise spraying applications.

Funder

Science and Technology Planning Project of Guangdong Province

National Key Research and Development Plan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3