ResLMFFNet: a real-time semantic segmentation network for precision agriculture

Author:

Ulku Irem

Abstract

AbstractLightweight multiscale-feature-fusion network (LMFFNet), a proficient real-time CNN architecture, adeptly achieves a balance between inference time and accuracy. Capturing the intricate details of precision agriculture target objects in remote sensing images requires deep SEM-B blocks in the LMFFNet model design. However, employing numerous SEM-B units leads to instability during backward gradient flow. This work proposes the novel residual-LMFFNet (ResLMFFNet) model for ensuring smooth gradient flow within SEM-B blocks. By incorporating residual connections, ResLMFFNet achieves improved accuracy without affecting the inference speed and the number of trainable parameters. The results of the experiments demonstrate that this architecture has achieved superior performance compared to other real-time architectures across diverse precision agriculture applications involving UAV and satellite images. Compared to LMFFNet, the ResLMFFNet architecture enhances the Jaccard Index values by 2.1% for tree detection, 1.4% for crop detection, and 11.2% for wheat-yellow rust detection. Achieving these remarkable accuracy levels involves maintaining almost identical inference time and computational complexity as the LMFFNet model. The source code is available on GitHub: https://github.com/iremulku/Semantic-Segmentation-in-Precision-Agriculture.

Funder

Ankara University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3