Weed Management Using UAV and Remote Sensing in Malaysia Paddy Field: A Review
-
Published:2024-04-04
Issue:3
Volume:32
Page:1219-1241
-
ISSN:2231-8526
-
Container-title:Pertanika Journal of Science and Technology
-
language:en
-
Short-container-title:JST
Author:
Ramli Zaid,Juraimi Abdul Shukor,Motmainna Mst.,Che’Ya Nik Norasma,Mohd Roslim Muhammad Huzaifah,Mohd Noor Nisfariza,Ahmad Anuar
Abstract
Controlling weed infestation is pivotal to achieving the maximum yield in paddy fields. At a time of exponential human population growth and depleting arable land mass, finding the solution to this problem is crucial. For a long time, herbicides have been the most favoured approach for weed control due to their efficacy and ease of application. However, adverse effects on the environment due to the excessive use of herbicides have prompted more cautious and effective herbicide usage. Many weed species tend to dominate the field, and the weed thrived in patches, rendering conventional broad herbicide spraying futile. Site-specific weed management (SSWM) consists of two strategies: weed mapping and selective herbicide application. Since its introduction into the agriculture sector, unmanned aerial vehicles (UAV) have become the platform of choice for carrying both the remote sensing system for weed mapping and the selective application of herbicide. Red-Green-Blue (RGB), multispectral and hyperspectral sensors on UAVs enable highly accurate weed mapping. In Malaysia, adopting this technology is highly possible, given the nature of government-administrated rice cultivation. This review provides insight into the weed management practice using remote sensing techniques on UAV platforms with potential applications in Malaysia's paddy field. It also discusses the recent works on weed mapping with imaging remote sensing on a UAV platform.
Publisher
Universiti Putra Malaysia
Reference83 articles.
1. Abidin, I. S. Z., Haseeb, M., Islam, R., & Chiat, L. W. (2022). Role of technology adoption, labor force and capital formation on the rice production in Malaysia. AgBioForum, 24(1), 41–49. 2. Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sensing, 9(11), Article 1110. https://doi.org/10.3390/rs9111110 3. Alam, M. K., Bell, R. W., Hasanuzzaman, M., Salahin, N., Rashid, M. H., Akter, N., Akhter, S., Islam, M. S., Islam, S., Naznin, S., Anik, M. F. A., Mosiur Rahman Bhuyin Apu, M., Saif, H. Bin, Alam, M. J., & Khatun, M. F. (2020). Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy, 10(6), Article 888. https://doi.org/10.3390/agronomy10060888 4. Askari, M. S., McCarthy, T., Magee, A., & Murphy, D. J. (2019). Evaluation of grass quality under different soil management scenarios using remote sensing techniques. Remote Sensing, 11(15), Article 1835. https://doi.org/10.3390/rs11151835 5. Benos, L., Tagarakis A. C., Dolias G., Berruto R., Kateris D., & Bochtis D. (2021) Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), Article 3758. https://doi.org/10.3390/s21113758
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|