Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields

Author:

Alam Md. KhairulORCID,Bell Richard W.ORCID,Hasanuzzaman MirzaORCID,Salahin N.,Rashid M.H.,Akter Nadia,Akhter S.,Islam Mahammad Shariful,Islam S.,Naznin S.,Anik M.F.A.,Apu Md. Mosiur Rahman BhuyinORCID,Saif Hasib Bin,Alam M.J.,Khatun Mst. Fatima

Abstract

Rice-based intensive cropping systems require high input levels making them less profitable and vulnerable to the reduced availability of labor and water in Asia. With continuous conventional puddled rice transplanting, the situation is exacerbated by damaged soil structure, declining underground water and decreasing land and water productivity. To minimize these negative effects a range of new crop establishment practices have been developed (zero tillage, dry direct seeding, wet direct seeding, water seeding, strip planting, bed planting, non-puddled transplanting of rice, mechanical transplanting of rice crop and combinations thereof) with varying effects on soil health, crop productivity, resource saving and global warming mitigation potential. Some of these allow Conservation Agriculture (CA) to be practiced in the rice-based mono-, double- and triple cropping systems. Innovations in machinery especially for smallholder farms have supported the adoption of the new establishment techniques. Non-puddling establishment of rice together with increased crop residue retention increased soil organic carbon by 79% and total N (TN) in soil by 62% relative to conventional puddling practice. Rice establishment methods (direct seeding of rice, system of rice intensification and non-puddled transplanting of rice) improve soil health by improving the physical (reduced bulk density, increased porosity, available water content), chemical (increased phosphorus, potassium and sulphur in their available forms) and biological properties (microbiome structure, microbial biomass C and N) of the soil. Even in the first year of its practice, the non-puddled transplanting method of rice establishment and CA practices for other crops increase the productivity of the rice-based cropping systems. Estimates suggest global warming potential (GWP) (the overall net effect) can be reduced by a quarter by replacing conventional puddling of rice by direct-seeded rice in the Indo-Gangetic Plains for the rice-based cropping system. Moreover, non-puddled transplanting of rice saves 35% of the net life cycle greenhouse gases (GHGs) compared with the conventional practice by a combination of decreasing greenhouse gases emissions from soil and increasing soil organic carbon (SOC). Though the system of rice intensification decreases net GHG emission, the practice releases 1.5 times greater N2O due to the increased soil aeration. There is no single rice establishment technology that is superior to others in all circumstances, rather a range of effective technologies that can be applied to different agro-climates, demography and farm typologies.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

Reference276 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3