Abstract
The clinical prevalence of antifungal drug resistance has been increasing over recent years, resulting in the failure of treatments. In an attempt to overcome this critical problem, we sought novel synergistic enhancers to restore the effectiveness of fluconazole against resistant Candida albicans. Based on the structural optimization of hit compound 8 from our in-house library, a series of novel 1,3,5-triazines derivatives was designed, synthesized, and biologically evaluated for synergistic activity in combination with fluconazole. Among them, compounds 10a–o, which contain thiosemicarbazides side chains, exhibited excellent in vitro synergistic antifungal potency (MIC80 = 0.125–2.0 μg/mL, FICI range from 0.127 to 0.25). Interestingly, compound 10l exhibited moderate C. albicans activity as monotherapy with an MIC80 value of 4.0 μg/mL, and also on several Cryptococcus strains (MIC80 ranging from ≤ 0.125–0.5 μg/mL) and C. glabrata (MIC80 ≤ 0.125 μg/mL). These effects were fungal-selective, with much lower levels of cytotoxicity towards human umbilical vein endothelial cells. Here, we report a series of thiosemicarbazides containing 1,3,5-triazines derivatives as potent synergists with fluconazole, and have preliminarily validated compound 10l as a promising antifungal lead for further investigation.
Funder
National Natural Science Foundation of China
Shanghai Pujiang Program
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent Advancements and Developments in the Biological Importance of 1,3,5‐Triazines;ChemistrySelect;2024-03-19
2. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo;Journal of Medicinal Chemistry;2024-02-21
3. Exploration of Baicalein-Core Derivatives as Potent Antifungal Agents: SAR and Mechanism Insights;Molecules;2023-08-30
4. Synthesis of 3,4-dihydro-1,3,5-triazin-2(1H)-one derivatives by recycling 2H-1,3,5-oxadiazine-2,4(3H)-diimines: their spectral characteristics and molecular structure;Structural Chemistry;2023-05-12
5. Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox;Pathogens;2023-01-12