Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol

Author:

Liu Yuancai,Gan Jun,Liu Wanyu,Zhang Xin,Xu Jian,Wu Yue,Yang Yuejun,Si Luqin,Li Gao,Huang JiangengORCID

Abstract

Alcoholic liver disease (ALD) has become a critical global public health issue worldwide. Tartary buckwheat extracts exhibit potential therapeutic effects against ALD due to its antioxidant and anti-inflammatory activities. However, in vivo pharmacokinetics and metabolite identification of tartary buckwheat extracts have not been clearly elucidated. Accordingly, the current manuscript aimed to investigate pharmacokinetics and to identify novel metabolites in beagle dogs following oral co-administration of tartary buckwheat extracts and ethanol. To support pharmacokinetic study, a simple LC-MS/MS method was developed and validated for simultaneous determination of quercetin and kaempferol in beagle dog plasma. The conjugated forms of both analytes were hydrolyzed by β-glucuronidase and sulfatase followed by liquid-liquid extraction using methyl tert-butyl ether. In addition, another effective approach was established using advanced ultrafast liquid chromatography coupled with a Q-Exactive hybrid quadrupole orbitrap high resolution mass spectrometer to identify the metabolites in beagle dog biological samples including urine, feces, and plasma. The pharmacokinetic study demonstrated that the absolute oral bioavailability for quercetin and kaempferol was determined to be 4.6% and 1.6%, respectively. Oral bioavailability of quercetin and kaempferol was limited in dogs probably due to poor absorption, significant first pass effect, and biliary elimination, etc. Using high resolution mass spectrometric analysis, a total of nine novel metabolites were identified for the first time and metabolic pathways included methylation, glucuronidation, and sulfation. In vivo pharmacokinetics and metabolite identification results provided preclinical support of co-administration of tartary buckwheat extracts and ethanol in humans.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3