Essential Oils of Gardenia jasminoides J. Ellis and Gardenia jasminoides f. longicarpa Z.W. Xie & M. Okada Flowers: Chemical Characterization and Assessment of Anti-Inflammatory Effects in Alveolar Macrophage

Author:

Zhang NanORCID,Bian Ying,Yao Lei

Abstract

Alveolar macrophage is the predominant cell type in the lung and is thought to be the major target for anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Aromatherapy using natural essential oils with anti-inflammatory effects for inhalable administration is a potential complementary and alternative therapy for COPD treatment. The Gardenia jasminoides flower is famous for its fragrance in East Asia and is used for treating colds and lung problems in folk medicine. Therefore, in the present study, flower essential oils from two main medicinal gardenia varieties (G. jasminoides J. Ellis and G. jasminoides f. longicarpa Z.W. Xie & M. Okada) were extracted by hydro-distillation, and their chemical components were analyzed by GC-MS. The anti-inflammatory effects of the two essential oils and their main ingredients were further studied on lipopolysaccharide (LPS)-induced models in murine alveolar macrophages (MH-S). The results indicated that the chemical constituents of the two gardenia varieties were quite different. Alcohol accounted for 53.8% of the G. jasminoides essential oil, followed by terpenes (16.01%). Terpenes accounted for 34.32% of the G. jasminoides f. longicarpa essential oil, followed by alcohols (19.6%) and esters (13.85%). Both the two gardenia essential oils inhibited the LPS-induced nitric oxide (NO) release and reduced the production of tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) in the MH-S cells. Linalool and α-farnesene dose-dependently reduced the NO release in the MH-S cells. Linalool and α-farnesene did not affect the PGE2 production but regulated the expression of TNF- α. In addition to linalool and α-farnesene, other components in the gardenia flower essential oils appeared to be able to act as anti-inflammatory agents and influence the PGE2 pathway.

Funder

Shanghai Sailing Program

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3