A Comparison Analysis of Four Different Drying Treatments on the Volatile Organic Compounds of Gardenia Flowers

Author:

Peng Jiangli12ORCID,Ai Wen13,Yin Xinyi12,Huang Dan123ORCID,Li Shunxiang123

Affiliation:

1. Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China

2. Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha 410208, China

3. State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China

Abstract

The gardenia flower not only has extremely high ornamental value but also is an important source of natural food and spices, with a wide range of uses. To support the development of gardenia flower products, this study used headspace gas chromatography–ion mobility spectrometry (HS-GC–IMS) technology to compare and analyze the volatile organic compounds (VOCs) of fresh gardenia flower and those after using four different drying methods (vacuum freeze-drying (VFD), microwave drying (MD), hot-air drying (HAD), and vacuum drying (VD)). The results show that, in terms of shape, the VFD sample is almost identical to fresh gardenia flower, while the HAD, MD, and VD samples show significant changes in appearance with clear wrinkling; a total of 59 volatile organic compounds were detected in the gardenia flower, including 13 terpenes, 18 aldehydes, 4 esters, 8 ketones, 15 alcohols, and 1 sulfide. Principal component analysis (PCA), cluster analysis (CA), and partial least-squares regression analysis (PLS-DA) were performed on the obtained data, and the research found that different drying methods impact the VOCs of the gardenia flower. VFD or MD may be the most effective alternative to traditional sun-drying methods. Considering its drying efficiency and production cost, MD has the widest market prospects.

Funder

Hunan Provincial Natural Science Foundation of China

Key Discipline Project on Chinese Pharmacology of Hunan University of Chinese Medicine

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3