Numerical Simulation of Forming MICP Horizontal Seepage Reducing Body in Confined Aquifer for Deep Excavation

Author:

Wang JianxiuORCID,Long YanxiaORCID,Zhao Yu,Pan Weiqiang,Qu Jianxun,Yang Tianliang,Huang Xinlei,Liu Xiaotian,Xu Na

Abstract

The drawdown outside of a deep foundation pit has to be controlled during excavation. However, the vertical curtain cannot cutoff a deep and thick confined aquifer during deep excavation. In this study, a microbial-induced carbonate precipitation (MICP) horizontal seepage reducing body (HSRB) was proposed to control drawdown combined with a partially penetrating curtain. MICP HSRB is formed by using the seepage field generated by the recharge wells to drive the migration of a Sporosarcina pasteurii solution, stationary solution, and cementation solution into the deep confined aquifer. The migration of each solution was numerically simulated to study the HSRB formation process. The influence of different factors on solute migration was studied. The results show that the solutes in the fixed fluid and cementation fluid can reach the area under the driving of the seepage field, which proves that MICP HSRB can be formed. The calcium ions and urea in the cementation solution are more likely to migrate to the designated area than the bacterial solution. Increasing the injection rate of bacterial solution and adding recharge wells both made the bacterial solution migrate more quickly to the designated area. In the case of multiple grouting, the solute migration in the later stage will be hindered by the plugging of pores caused by calcium carbonate generated in the earlier stage. Therefore, different grouting methods need to be designed to drive the seepage field so that the solute injected in the later stage can continue to migrate. The MICP HSRB grouting technology can be used in foundation pit dewatering, providing reference for similar engineering.

Funder

Shanghai Municipal Science and Technology Project

Xiamen Road and Bridge Group

the project of Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education

Shanghai Municipal Science and Technology Major Project

Fundamental Research Funds for the Central Universities

Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Natural Resources of the People’s Republic of China

Suzhou Rail Transit Line 1 Co., Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3