Feasibility of Microbially Induced Carbonate Precipitation to Enhance the Internal Stability of Loess under Zn-Contaminated Seepage Conditions

Author:

He Pengli1,Guo Jinjun1,Zhang Shixu2

Affiliation:

1. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China

2. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Loess is widely distributed in Northwestern China and serves as the preferred engineering construction material for anti-fouling barriers. Heavy metal contamination in soil presents significant challenges to the engineering safety of vulnerable loess structures. Hence, there is an urgent need to investigate the impact of heavy metal ions on their percolation performance. In order to investigate the effectiveness of microbially induced carbonate precipitation (MICP) using Sporosarcina pasturii (CGMCC1.3687) bacteria in reducing internal seepage erosion, a saturated permeability test was conducted on reshaped loess under constant water head saturation conditions. The response of loess to deionized water (DW) and ZnCl2 solution seepages was analyzed by monitoring changes in cation concentration over time, measuring Zeta potential, and using scanning electron microscopy (SEM). The results indicate that the hydrolysis of Zn2+ creates an acidic environment, leading to the dissolution of carbonate minerals in the loess, which enhances its permeability. The adsorption of Zn2+ ions and the resulting diffusion double-layer (DDL) effect reduce the thickness of the diffusion layer and increase the number of free water channels. Additionally, the permeability of loess exposed to ZnCl2 solution seepage significantly increased by 554.5% compared to loess exposed to deionized water (DW) seepage. Following the seepage of ZnCl2 solutions, changes in micropore area ratio were observed, decreasing by 48.80%, while mesopore areas increased by 23.9%. MICP treatment helps reduce erosion and volume shrinkage in contaminated loess. Carbonate precipitation enhances the erosion resistance of contaminated loess by absorbing or coating fine particles and creating bridging connections with coarse particles. These research results offer new perspectives on enhancing the seepage properties of saturated loess in the presence of heavy metal erosion and the geochemical mechanisms involved.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3