Region-Based CNN for Anomaly Detection in PV Power Plants Using Aerial Imagery

Author:

Vlaminck MichielORCID,Heidbuchel Rugen,Philips Wilfried,Luong HiepORCID

Abstract

Today, solar energy is taking an increasing share of the total energy mix. Unfortunately, many operational photovoltaic plants suffer from a plenitude of defects resulting in non-negligible power loss. The latter highly impacts the overall performance of the PV site; therefore, operators need to regularly inspect their solar parks for anomalies in order to prevent severe performance drops. As this operation is naturally labor-intensive and costly, we present in this paper a novel system for improved PV diagnostics using drone-based imagery. Our solution consists of three main steps. The first step locates the solar panels within the image. The second step detects the anomalies within the solar panels. The final step identifies the root cause of the anomaly. In this paper, we mainly focus on the second step comprising the detection of anomalies within solar panels, which is done using a region-based convolutional neural network (CNN). Experiments on six different PV sites with different specifications and a variety of defects demonstrate that our anomaly detector achieves a true positive rate or recall of more than 90% for a false positive rate of around 2% to 3% tested on a dataset containing nearly 9000 solar panels. Compared to the best state-of-the-art methods, the experiments revealed that we achieve a slightly higher true positive rate for a substantially lower false positive rate, while tested on a more realistic dataset.

Funder

Imec

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing the Cloud: A Novel Approach to Smart Solar Plant Monitoring;Future Internet;2024-05-29

2. Smart Monitoring and Diagnostics for Fault Detection in Power Plant Equipment;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

3. Review of Deep Learning-Based Hotspot Detection in Solar Photovoltaic Arrays;2024 IEEE 4th International Conference in Power Engineering Applications (ICPEA);2024-03-04

4. A novel technique for implementing hybrid optimization technique for PV thermal images to categorize and localize the faults;Intelligent Decision Technologies;2024-02-20

5. Studies on Techniques to Improve YOLO in Fault Detection Using RGB Images of Solar Panels;2024 International Conference on Green Energy, Computing and Sustainable Technology (GECOST);2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3