Harnessing the Cloud: A Novel Approach to Smart Solar Plant Monitoring

Author:

Ali Mohammad Imran1ORCID,Dost Shahi2ORCID,Khattak Khurram Shehzad1ORCID,Khan Muhammad Imran3ORCID,Muhammad Riaz4ORCID

Affiliation:

1. National Center for Big Data & Cloud Computing, University of Engineering and Technology (UET), Peshawar 2023, Pakistan

2. TIB—Leibniz Information Centre for Science and Technology, 30167 Hannover, Germany

3. Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar 34754, Saudi Arabia

4. Mechanical Engineering Department, College of Engineering, University of Bahrain, Isa Town Campus, Isa Town 810, Bahrain

Abstract

Renewable Energy Sources (RESs) such as hydro, wind, and solar are merging as preferred alternatives to fossil fuels. Among these RESs, solar energy is the most ideal solution; it is gaining extensive interest around the globe. However, due to solar energy’s intermittent nature and sensitivity to environmental parameters (e.g., irradiance, dust, temperature, aging and humidity), real-time solar plant monitoring is imperative. This paper’s contribution is to compare and analyze current IoT trends and propose future research directions. As a result, this will be instrumental in the development of low-cost, real-time, scalable, reliable, and power-optimized solar plant monitoring systems. In this work, a comparative analysis has been performed on proposed solutions using the existing literature. This comparative analysis has been conducted considering five aspects: computer boards, sensors, communication, servers, and architectural paradigms. IoT architectural paradigms employed have been summarized and discussed with respect to communication, application layers, and storage capabilities. To facilitate enhanced IoT-based solar monitoring, an edge computing paradigm has been proposed. Suggestions are presented for the fabrication of edge devices and nodes using optimum compute boards, sensors, and communication modules. Different cloud platforms have been explored, and it was concluded that the public cloud platform Amazon Web Services is the ideal solution. Artificial intelligence-based techniques, methods, and outcomes are presented, which can help in the monitoring, analysis, and management of solar PV systems. As an outcome, this paper can be used to help researchers and academics develop low-cost, real-time, effective, scalable, and reliable solar monitoring systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3