Statistical Methods for Degradation Estimation and Anomaly Detection in Photovoltaic Plants

Author:

Dimitrievska VesnaORCID,Pittino FedericoORCID,Muehleisen Wolfgang,Diewald Nicole,Hilweg Markus,Montvay AndràsORCID,Hirschl Christina

Abstract

Photovoltaic (PV) plants typically suffer from a significant degradation in performance over time due to multiple factors. Operation and maintenance systems aim at increasing the efficiency and profitability of PV plants by analyzing the monitoring data and by applying data-driven methods for assessing the causes of such performance degradation. Two main classes of degradation exist, being it either gradual or a sudden anomaly in the PV system. This has motivated our work to develop and implement statistical methods that can reliably and accurately detect the performance issues in a cost-effective manner. In this paper, we introduce different approaches for both gradual degradation assessment and anomaly detection. Depending on the data available in the PV plant monitoring system, the appropriate method for each degradation class can be selected. The performance of the introduced methods is demonstrated on data from three different PV plants located in Slovenia and Italy monitored for several years. Our work has led us to conclude that the introduced approaches can contribute to the prompt and accurate identification of both gradual degradation and sudden anomalies in PV plants.

Funder

Austrian Climate and Energy Funds: Energieforschung (e!MISSION), Energieforschung 5. Ausschreibung 2018

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3