Parallel Algorithm with Blocks for a Single-Machine Total Weighted Tardiness Scheduling Problem

Author:

Uchroński MariuszORCID

Abstract

In this paper, the weighted tardiness single-machine scheduling problem is considered. To solve it an approximate (tabu search) algorithm, which works by improving the current solution by searching the neighborhood, is used. Methods of eliminating bad solutions from the neighborhood (the so-called block elimination properties) were also presented and implemented in the algorithm. Blocks allow a significant shortening of the process of searching the neighborhood generated by insert type moves. The designed parallel tabu search algorithm was implemented using the MPI (Message Passing Interface) library. The obtained speedups are very large (over 60,000×) and superlinear. This may be a sign that the parallel algorithm is superior to the sequential one as the sequential algorithm is not able to effectively search the solution space for the problem under consideration. Only the introduction of diversification process through parallelization can provide an adequate coverage of the entire search process. The current methods of parallelization of metaheuristics give a speedup which strongly depends on the problem’s instances, rarely greater than number of used parallel processors. The method proposed here allows the obtaining of huge speedup values (over 60,000×), but only when so-called blocks are used. The above-mentioned speedup values can be obtained on high performance computing infrastructures such as clusters with the use of MPI library.

Funder

Narodowe Centrum Nauki

Wroclawskie Centrum Sieciowo-Superkomputerowe, Politechnika Wroclawska

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3