Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China

Author:

Han Haoshuang,Wan RongrongORCID,Li Bing

Abstract

Quantitatively mapping forest aboveground biomass (AGB) is of great significance for the study of terrestrial carbon storage and global carbon cycles, and remote sensing-based data are a valuable source of estimating forest AGB. In this study, we evaluated the potential of machine learning algorithms (MLAs) by integrating Gaofen-1 (GF1) images, Sentinel-1 (S1) images, and topographic data for AGB estimation in the Dabie Mountain region, China. Variables extracted from GF1 and S1 images and digital elevation model data from sample plots were used to explain the field AGB value variations. The prediction capability of stepwise multiple regression and three MLAs, i.e., support vector machine (SVM), random forest (RF), and backpropagation neural network were compared. The results showed that the RF model achieved the highest prediction accuracy (R2 = 0.70, RMSE = 16.26 t/ha), followed by the SVM model (R2 = 0.66, RMSE = 18.03 t/ha) for the testing datasets. Some variables extracted from the GF1 images (e.g., normalized differential vegetation index, band 1-blue, the mean texture feature of band 3-red with windows of 3 × 3), S1 images (e.g., vertical transmit-horizontal receive and vertical transmit-vertical receive backscatter coefficient), and altitude had strong correlations with field AGB values (p < 0.01). Among the explanatory variables in MLAs, variables extracted from GF1 made a greater contribution to estimating forest AGB than those derived from S1 images. These results indicate the potential of the RF model for evaluating forest AGB by combining GF1 and S1, and that it could provide a reference for biomass estimation using multi-source images.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3