Object Detection-Based System for Traffic Signs on Drone-Captured Images

Author:

Naranjo Manuel1,Fuentes Diego1,Muelas Elena1,Díez Enrique1ORCID,Ciruelo Luis1,Alonso César1,Abenza Eduardo1,Gómez-Espinosa Roberto1,Luengo Inmaculada1ORCID

Affiliation:

1. HI-Iberia Ingeniería y Proyectos, SL, 28016 Madrid, Spain

Abstract

The construction industry is on the path to digital transformation. One of the main challenges in this process is inspecting, assessing, and maintaining civil infrastructures and construction elements. However, Artificial Intelligence (AI) and Unmanned Aerial Vehicles (UAVs) can support the tedious and time-consuming work inspection processes. This article presents an innovative object detection-based system which enables the detection and geo-referencing of different traffic signs from RGB images captured by a drone’s onboard camera, thus improving the realization of road element inventories in civil infrastructures. The computer vision component follows the typical methodology for a deep-learning-based SW: dataset creation, election and training of the most accurate object detection model, and testing. The result is the creation of a new dataset with a wider variety of traffic signs and an object detection-based system using Faster R-CNN to enable the detection and geo-location of traffic signs from drone-captured images. Despite some significant challenges, such as the lack of drone-captured images with labeled traffic signs and the imbalance in the number of images for traffic signal detection, the computer vision component allows for the accurate detection of traffic signs from UAV images.

Funder

framework of the Comp4Drones project

ECSEL Joint Undertaking 2018

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference56 articles.

1. Mohsan, S.A.H., Khan, M.A., Noor, F., Ullah, I., and Alsharif, M.H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6.

2. Towards a Framework of Key Technologies for Drones;Nouacer;Microprocess. Microsyst.,2020

3. (2022, November 10). C4DConsortium ECSEL Comp4Drones. Available online: https://www.comp4drones.eu/.

4. C4DConsortium (2021). D1.1—Specification of Industrial Use Cases Version 2.1, COMP4DRONES.

5. ImageNet Large Scale Visual Recognition Challenge;Russakovsky;Int. J. Comput. Vis.,2015

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3