Drone-YOLO: An Efficient Neural Network Method for Target Detection in Drone Images

Author:

Zhang Zhengxin1ORCID

Affiliation:

1. College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Abstract

Object detection in unmanned aerial vehicle (UAV) imagery is a meaningful foundation in various research domains. However, UAV imagery poses unique challenges, including large image sizes, small sizes detection objects, dense distribution, overlapping instances, and insufficient lighting impacting the effectiveness of object detection. In this article, we propose Drone-YOLO, a series of multi-scale UAV image object detection algorithms based on the YOLOv8 model, designed to overcome the specific challenges associated with UAV image object detection. To address the issues of large scene sizes and small detection objects, we introduce improvements to the neck component of the YOLOv8 model. Specifically, we employ a three-layer PAFPN structure and incorporate a detection head tailored for small-sized objects using large-scale feature maps, significantly enhancing the algorithm’s capability to detect small-sized targets. Furthermore, we integrate the sandwich-fusion module into each layer of the neck’s up–down branch. This fusion mechanism combines network features with low-level features, providing rich spatial information about the objects at different layer detection heads. We achieve this fusion using depthwise separable evolution, which balances parameter costs and a large receptive field. In the network backbone, we employ RepVGG modules as downsampling layers, enhancing the network’s ability to learn multi-scale features and outperforming traditional convolutional layers. The proposed Drone-YOLO methods have been evaluated in ablation experiments and compared with other state-of-the-art approaches on the VisDrone2019 dataset. The results demonstrate that our Drone-YOLO (large) outperforms other baseline methods in the accuracy of object detection. Compared to YOLOv8, our method achieves a significant improvement in mAP0.5 metrics, with a 13.4% increase on the VisDrone2019-test and a 17.40% increase on the VisDrone2019-val. Additionally, the parameter-efficient Drone-YOLO (tiny) with only 5.25 M parameters performs equivalently or better than the baseline method with 9.66M parameters on the dataset. These experiments validate the effectiveness of the Drone-YOLO methods in the task of object detection in drone imagery.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3