SOD-YOLO: Small-Object-Detection Algorithm Based on Improved YOLOv8 for UAV Images

Author:

Li Yangang1,Li Qi12,Pan Jie2,Zhou Ying1,Zhu Hongliang1,Wei Hongwei1,Liu Chong1

Affiliation:

1. Qilu Aerospace Information Research Institute, Jinan 250132, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The rapid development of unmanned aerial vehicle (UAV) technology has contributed to the increasing sophistication of UAV-based object-detection systems, which are now extensively utilized in civilian and military sectors. However, object detection from UAV images has numerous challenges, including significant variations in the object size, changing spatial configurations, and cluttered backgrounds with multiple interfering elements. To address these challenges, we propose SOD-YOLO, an innovative model based on the YOLOv8 model, to detect small objects in UAV images. The model integrates the receptive field convolutional block attention module (RFCBAM) in the backbone network to perform downsampling, improving feature extraction efficiency and mitigating the spatial information sparsity caused by downsampling. Additionally, we developed a novel neck architecture called the balanced spatial and semantic information fusion pyramid network (BSSI-FPN) designed for multi-scale feature fusion. The BSSI-FPN effectively balances spatial and semantic information across feature maps using three primary strategies: fully utilizing large-scale features, increasing the frequency of multi-scale feature fusion, and implementing dynamic upsampling. The experimental results on the VisDrone2019 dataset demonstrate that SOD-YOLO-s improves the mAP50 indicator by 3% compared to YOLOv8s while reducing the number of parameters and computational complexity by 84.2% and 30%, respectively. Compared to YOLOv8l, SOD-YOLO-l improves the mAP50 indicator by 7.7% and reduces the number of parameters by 59.6%. Compared to other existing methods, SODA-YOLO-l achieves the highest detection accuracy, demonstrating the superiority of the proposed method.

Funder

National Key Research and Development Program of China

Key Technology Research and Development Program of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3