Dense Small Object Detection Based on an Improved YOLOv7 Model

Author:

Chen Xun1,Deng Linyi1,Hu Chao2,Xie Tianyi1,Wang Chengqi1

Affiliation:

1. School of Information and Communication Engineering, Hainan University, Haikou 570228, China

2. School of Electronic Information, Central South University, Changsha 410083, China

Abstract

Detecting small and densely packed objects in images remains a significant challenge in computer vision. Existing object detection methods often exhibit low accuracy and frequently miss detection when identifying dense small objects and require larger model parameters. This study introduces a novel detection framework designed to address these limitations by integrating advanced feature fusion and optimization techniques. Our approach focuses on enhancing both detection accuracy and parameter efficiency. The approach was evaluated on the open-source VisDrone2019 data set and compared with mainstream algorithms. Experimental results demonstrate a 70.2% reduction in network parameters and a 6.3% improvement in mAP@0.5 over the original YOLOv7 algorithm. These results demonstrate that the enhanced model surpasses existing algorithms in detecting small objects.

Funder

Hainan University

National Key Research and Development Program of China

National Natural Science Foundation of China

High-Performance Computing Center of Central South University

Publisher

MDPI AG

Reference34 articles.

1. Amit, Y., Felzenszwalb, P., and Girshick, R. (2021). Object detection. Computer Vision: A Reference Guide, Springer.

2. Accurate Movement Detection of Artificially Intelligent Security Objects;Palanisamy;Eur. J. Electr. Eng. Comput. Sci.,2023

3. Intelligent security system detects the hidden objects in the smart grid;Altaher;Indones. J. Electr. Eng. Comput. Sci. (IJEECS),2020

4. Automated surface defect detection in metals: A comparative review of object detection and semantic segmentation using deep learning;Usamentiaga;IEEE Trans. Ind. Appl.,2022

5. A wafer surface defect detection method built on generic object detection network;Wang;Digit. Signal Process.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3