Radiometric Correction of Multispectral Field Images Captured under Changing Ambient Light Conditions and Applications in Crop Monitoring

Author:

Xue Beibei1ORCID,Ming Bo1ORCID,Xin Jiangfeng12,Yang Hongye1,Gao Shang1,Guo Huirong12,Feng Dayun1,Nie Chenwei1,Wang Keru1,Li Shaokun1ORCID

Affiliation:

1. Key Laboratory of Crop Physiology and Ecology, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. School of Agriculture, Ningxia University, Yinchuan 750021, China

Abstract

Applications of unmanned aerial vehicle (UAV) spectral systems in precision agriculture require raw image data to be converted to reflectance to produce time-consistent, atmosphere-independent images. Complex light environments, such as those caused by varying weather conditions, affect the accuracy of reflectance conversion. An experiment was conducted here to compare the accuracy of several target radiance correction methods, namely pre-calibration reference panel (pre-CRP), downwelling light sensor (DLS), and a novel method, real-time reflectance calibration reference panel (real-time CRP), in monitoring crop reflectance under variable weather conditions. Real-time CRP used simultaneous acquisition of target and CRP images and immediate correction of each image. These methods were validated with manually collected maize indictors. The results showed that real-time CRP had more robust stability and accuracy than DLS and pre-CRP under various conditions. Validation with maize data showed that the correlation between aboveground biomass and vegetation indices had the least variation under different light conditions (correlation all around 0.74), whereas leaf area index (correlation from 0.89 in sunny conditions to 0.82 in cloudy days) and canopy chlorophyll content (correlation from 0.74 in sunny conditions to 0.67 in cloudy days) had higher variation. The values of vegetation indices TVI and EVI varied little, and the model slopes of NDVI, OSAVI, MSR, RVI, NDRE, and CI with manually measured maize indicators were essentially constant under different weather conditions. These results serve as a reference for the application of UAV remote sensing technology in precision agriculture and accurate acquisition of crop phenotype data.

Funder

National Key Research and Development Program of China

China Agriculture Research System of MOF and MARA, and the Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3