Multispectral Sensor Calibration and Characterization for sUAS Remote Sensing

Author:

Mamaghani ,Salvaggio ORCID

Abstract

This paper focuses on the calibration of multispectral sensors typically used for remote sensing. These systems are often provided with "factory" radiometric calibration and vignette correction parameters. These parameters, which are assumed to be accurate when the sensor is new, may change as the camera is utilized in real-world conditions. As a result, regular calibration and characterization of any sensor should be conducted. An end-user laboratory method for computing both the vignette correction and radiometric calibration function is discussed in this paper. As an exemplar, this method for radiance computation is compared to the method provided by MicaSense for their RedEdge series of sensors. The proposed method and the method provided by MicaSense for radiance computation are applied to a variety of images captured in the laboratory using a traceable source. In addition, a complete error propagation is conducted to quantify the error produced when images are converted from digital counts to radiance. The proposed methodology was shown to produce lower errors in radiance imagery. The average percent error in radiance was −10.98%, −0.43%, 3.59%, 32.81% and −17.08% using the MicaSense provided method and their "factory" parameters, while the proposed method produced errors of 3.44%, 2.93%, 2.93%, 3.70% and 0.72% for the blue, green, red, near infrared and red edge bands, respectively. To further quantify the error in terms commonly used in remote sensing applications, the error in radiance was propagated to a reflectance error and additionally used to compute errors in two widely used parameters for assessing vegetation health, NDVI and NDRE. For the NDVI example, the ground reference was computed to be 0.899 ± 0.006, while the provided MicaSense method produced a value of 0.876 ± 0.005 and the proposed method produced a value of 0.897 ± 0.007. For NDRE, the ground reference was 0.455 ± 0.028, MicaSense method produced 0.239 ± 0.026 and the proposed method produced 0.435 ± 0.038.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3