Improving Radiometric Block Adjustment for UAV Multispectral Imagery under Variable Illumination Conditions

Author:

Wang Yuxiang12,Yang Zengling1,Khan Haris Ahmad3ORCID,Kootstra Gert2ORCID

Affiliation:

1. College of Engineering, China Agricultural University, Beijing 100083, China

2. Agricultural Biosystems Engineering Group, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

3. Data Science, Crop Protection Development, Syngenta, Westeinde 62, 1601 BK Enkhuizen, The Netherlands

Abstract

Unmanned aerial vehicles (UAVs) equipped with multispectral cameras offer great potential for applications in precision agriculture. A critical challenge that limits the deployment of this technology is the varying ambient illumination caused by cloud movement. Rapidly changing solar irradiance primarily affects the radiometric calibration process, resulting in reflectance distortion and heterogeneity in the final generated orthomosaic. In this study, we optimized the radiometric block adjustment (RBA) method, which corrects for changing illumination by comparing adjacent images and from incidental observations of reference panels to produce accurate and uniform reflectance orthomosaics regardless of variable illumination. The radiometric accuracy and uniformity of the generated orthomosaic could be enhanced by improving the weights of the information from the reference panels and by reducing the number of tie points between adjacent images. Furthermore, especially for crop monitoring, we proposed the RBA-Plant method, which extracts tie points solely from vegetation areas, to further improve the accuracy and homogeneity of the orthomosaic for the vegetation areas. To validate the effectiveness of the optimization techniques and the proposed RBA-Plant method, visual and quantitative assessments were conducted on a UAV-image dataset collected under fluctuating solar irradiance conditions. The results demonstrated that the optimized RBA and RBA-Plant methods outperformed the current empirical line method (ELM) and sensor-corrected approaches, showing significant improvements in both radiometric accuracy and homogeneity. Specifically, the average root mean square error (RMSE) decreased from 0.084 acquired by the ELM to 0.047, and the average coefficient of variation (CV) decreased from 24% (ELM) to 10.6%. Furthermore, the orthomosaic generated by the RBA-Plant method achieved the lowest RMSE and CV values, 0.039 and 6.8%, respectively, indicating the highest accuracy and best uniformity. In summary, although UAVs typically incorporate lighting sensors for illumination correction, this research offers different methods for improving uniformity and obtaining more accurate reflectance values from orthomosaics.

Funder

China Scholarship Council

National Key R&D Program of China

Agricultural Green Development (AGD) project

Wageningen University & Research

China Agricultural University

Hainan University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3