Budgeted Bandits for Power Allocation and Trajectory Planning in UAV-NOMA Aided Networks

Author:

Hosny Ramez12,Hashima Sherief34ORCID,Mohamed Ehab Mahmoud5ORCID,Zaki Rokaia M.16ORCID,ElHalawany Basem M.17ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering at Shoubra, Benha University, Cairo 11614, Egypt

2. Higher Technology Institute, 10th of Ramadan, Sharkia 44629, Egypt

3. Computational Learning Theory Team, RIKEN-Advanced Intelligence Project, Fukuoka 819-0395, Japan

4. Engineering Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt

5. Department of Electrical Engineering, College of Engineering in Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Wadi Addawasir 11991, Saudi Arabia

6. Higher Institute of Engineering and Technology, Kafr El-Shaikh 33514, Egypt

7. Department of Electronics and Communication Engineering, Kuwait College of Science and Technology, Block 4, Doha 13133, Kuwait

Abstract

On one hand combining Unmanned Aerial Vehicles (UAVs) and Non-Orthogonal Multiple Access (NOMA) is a remarkable direction to sustain the exponentially growing traffic requirements of the forthcoming Sixth Generation (6G) networks. In this paper, we investigate effective Power Allocation (PA) and Trajectory Planning Algorithm (TPA) for UAV-aided NOMA systems to assist multiple survivors in a post-disaster scenario, where ground stations are malfunctioned. Here, the UAV maneuvers to collect data from survivors, which are grouped in multiple clusters within the disaster area, to satisfy their traffic demands. On the other hand, while the problem is formulated as Budgeted Multi-Armed Bandits (BMABs) that optimize the UAV trajectory and minimize battery consumption, challenges may arise in real-world scenarios. Herein, the UAV is the bandit player, the disaster area clusters are the bandit arms, the sum rate of each cluster is the payoff, and the UAV energy consumption is the budget. Hence, to tackle these challenges, two Upper Confidence Bound (UCB) BMAB schemes are leveraged to handle this issue, namely BUCB1 and BUCB2. Simulation results confirm the superior performance of the proposed BMAB solution against benchmark solutions for UAV-aided NOMA communication. Notably, the BMAB-NOMA solution exhibits remarkable improvements, achieving 60% enhancement in the total number of assisted survivors, 80% improvement in convergence speed, and a considerable amount of energy saving compared to UAV-OMA.

Funder

JSPS KAKENHI

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3