Three-Dimensional Trajectory and Resource Allocation Optimization in Multi-Unmanned Aerial Vehicle Multicast System: A Multi-Agent Reinforcement Learning Method

Author:

Wang Dongyu1,Liu Yue1,Yu Hongda1,Hou Yanzhao2

Affiliation:

1. The Key Laboratory of Universal Wireless Communication, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Shenzhen Institute, Beijing University of Posts and Telecommunications, Shenzhen 518055, China

Abstract

Unmanned aerial vehicles (UAVs) are able to act as movable aerial base stations to enhance wireless coverage for edge users with poor ground communication quality. However, in urban environments, the link between UAVs and ground users can be blocked by obstacles, especially when complicated terrestrial infrastructures increase the probability of non-line-of-sight (NLoS) links. In this paper, in order to improve the average throughput, we propose a multi-UAV multicast system, where a multi-agent reinforcement learning method is utilized to help UAVs determine the optimal altitude and trajectory. Intelligent reflective surfaces (IRSs) are also employed to reflect signals to solve the blocking problem. Furthermore, since the UAV’s onboard power is limited, this paper aims to minimize the UAVs’ energy consumption and maximize the transmission rate for edge users by jointly optimizing the UAVs’ 3D trajectory and transmit power. Firstly, we deduce the channel capacity of ground users in different multicast groups. Subsequently, the K-medoids algorithm is utilized for the multicast grouping problem of edge users based on transmission rate requirements. Then, we employ the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm to learn an optimal solution and eliminate the non-stationarity of multi-agent training. Finally, the simulation results show that the proposed system can increase the average throughput by 14% approximately compared to the non-grouping system, and the MADDPG algorithm can achieve a 20% improvement in reducing the energy consumption of UAVs compared to traditional deep reinforcement learning (DRL) methods.

Funder

National Key R&D Program of China

Shenzhen Science and Technology Innovation Commission Free Exploring Basic Research Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3