Energy-Efficient Device-to-Device Communications for Green Internet of Things Using Unmanned Aerial Vehicle-Mounted Intelligent Reflecting Surface

Author:

Tan Fangqing1ORCID,Pang Shuo1,Cao Yashuai2,Chen Hongbin1ORCID,Lv Tiejun3ORCID

Affiliation:

1. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, China

2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

3. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

The Internet of Things (IoT) serves as a crucial element in interconnecting diverse devices within the realm of smart technology. However, the energy consumption of IoT technology has become a notable challenge and an area of interest for researchers. With the aim of achieving an IoT with low power consumption, green IoT has been introduced. The use of unmanned aerial vehicles (UAVs) represents a highly innovative approach for creating a sustainable green IoT network. UAVs offer advantages in terms of flexibility, mobility, and cost. Moreover, device-to-device (D2D) communication is essential in emergency communications, due to its ability to support direct communication between devices. The intelligent reflecting surface (IRS) is also a hopeful technology which reconstructs the radio propagation environment and provides a possible solution to reduce co-channel interference resulting from spectrum sharing for D2D communications. The investigation in this paper hence focuses on energy-efficient UAV-IRS-assisted D2D communications for green IoT. In particular, a problem of optimization aimed at maximizing the system’s average energy efficiency (EE) is formulated, firstly, by simultaneously optimizing the power coefficients of all D2D transmitters, the UAV’s trajectory, and the base station (BS)’s active beamforming, along with the IRS’s phase shifts. Second, to address the problem, we develop a multi-agent twin delayed deep deterministic policy gradient (MATD3)-based scheme to find a near-optimal solution, where D2D transmitters, the BS, and the UAV cooperatively learn to improve EE and suppress the interference. To conclude, numerical simulations are conducted to assess the availability of the proposed scheme, and the simulation results demonstrate that the proposed scheme surpasses the baseline approaches in both convergence speed and EE performance.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Director Foundation of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3