Spectral-Spatial Attention Rotation-Invariant Classification Network for Airborne Hyperspectral Images

Author:

Shi Yuetian12,Fu Bin12,Wang Nan12ORCID,Cheng Yinzhu12,Fang Jie3,Liu Xuebin1,Zhang Geng1

Affiliation:

1. Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710100, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Telecommunication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710061, China

Abstract

An airborne hyperspectral imaging system is typically equipped on an aircraft or unmanned aerial vehicle (UAV) to capture ground scenes from an overlooking perspective. Due to the rotation of the aircraft or UAV, the same region of land cover may be imaged from different viewing angles. While humans can accurately recognize the same objects from different viewing angles, classification methods based on spectral-spatial features for airborne hyperspectral images exhibit significant errors. The existing methods primarily involve incorporating image or feature rotation angles into the network to improve its accuracy in classifying rotated images. However, these methods introduce additional parameters that need to be manually determined, which may not be optimal for all applications. This paper presents a spectral-spatial attention rotation-invariant classification network for the airborne hyperspectral image to address this issue. The proposed method does not require the introduction of additional rotation angle parameters. There are three modules in the proposed framework: the band selection module, the local spatial feature enhancement module, and the lightweight feature enhancement module. The band selection module suppresses redundant spectral channels, while the local spatial feature enhancement module generates a multi-angle parallel feature encoding network to improve the discrimination of the center pixel. The multi-angle parallel feature encoding network also learns the position relationship between each pixel, thus maintaining rotation invariance. The lightweight feature enhancement module is the last layer of the framework, which enhances important features and suppresses insignificance features. At the same time, a dynamically weighted cross-entropy loss is utilized as the loss function. This loss function adjusts the model’s sensitivity for samples with different categories according to the output in the training epoch. The proposed method is evaluated on five airborne hyperspectral image datasets covering urban and agricultural regions. Compared with other state-of-the-art classification algorithms, the method achieves the best classification accuracy and is capable of effectively extracting rotation-invariant features for urban and rural areas.

Funder

The Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3