Pre-rotation Only at Inference-Stage: A Way to Rotation Invariance of Convolutional Neural Networks

Author:

Fan Yue,Zhang Peng,Han Jingqi,Liu Dandan,Tang Jinsong,Zhang Guoping

Abstract

AbstractThe popular convolutional neural networks (CNN) require data augmentation to achieve rotation invariance. We propose an alternative mechanism, Pre-Rotation Only at Inference stage (PROAI), to make CNN rotation invariant. The overall idea is to learn how the human brain observe images. At the training stage, PROAI trains a CNN with a small number using images only at one orientation. At the inference stage, PROAI introduces a pre-rotation operation to rotate each test image into its all-possible orientations and calculate classification scores using the trained CNN with a small number of parameters. The maximum of these classification scores is able to simultaneously estimate both the category and the orientation of each test image. The specific benefits of PROAI have been experimented on rotated image recognition tasks. The results shows that PROAI improves both the classification and orientation estimation performance while greatly reduced the numbers of parameters and the training time. Codes and datasets are publicly available at https://github.com/automlresearch/FRPRF.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Alex, K., Ilya, S., Geoffrey, H.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–89 (2017)

2. LeCun, Y.: Generalization and network design strategies. Connect. Perspect. 19, 143–155 (1989)

3. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp. 3856–3866 (2017)

4. Mei, S., Jiang, R., Ma, M., et al.: Rotation-invariant feature learning via convolutional neural network with cyclic polar coordinates convolutional layer. IEEE Trans. Geosci. Remote Sens. 61, 1–13 (2023)

5. Quiroga, F.M., Torrents-Barrena, J., Lanzarini, L.C., et al.: Invariance measures for neural networks. Appl. Soft Comput. 132, 109817 (2023)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3