Constrained Spectral–Spatial Attention Residual Network and New Cross-Scene Dataset for Hyperspectral Classification

Author:

Li Siyuan123,Chen Baocheng13,Wang Nan4ORCID,Shi Yuetian13,Zhang Geng1,Liu Jia1

Affiliation:

1. Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. School of Physics, Xi’an Jiaotong University, Xi’an 710054, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Information Science and Technology, Hainan Normal University, Haikou 571158, China

Abstract

Hyperspectral image classification is widely applied in several fields. Since existing datasets focus on a single scene, current deep learning-based methods typically divide patches randomly on the same image as training and testing samples. This can result in similar spatial distributions of samples, which may incline the network to learn specific spatial distributions in pursuit of falsely high accuracy. In addition, the large variation between single-scene datasets has led to research in cross-scene hyperspectral classification, focusing on domain adaptation and domain generalization while neglecting the exploration of the generalizability of models to specific variables. This paper proposes two approaches to address these issues. The first approach is to train the model on the original image and then test it on the rotated dataset to simulate cross-scene evaluation. The second approach is constructing a new cross-scene dataset for spatial distribution variations, named GF14-C17&C16, to avoid the problems arising from the existing single-scene datasets. The image conditions in this dataset are basically the same, and only the land cover distribution is different. In response to the spatial distribution variations, this paper proposes a constrained spectral attention mechanism and a constrained spatial attention mechanism to limit the fitting of the model to specific feature distributions. Based on these, this paper also constructs a constrained spectral–spatial attention residual network (CSSARN). Extensive experimental results on two public hyperspectral datasets and the GF14-C17&C16 dataset have demonstrated that CSSARN is more effective than other methods in extracting cross-scene spectral and spatial features.

Funder

National Natural Science Foundation of China

National Science Basic Research Foundation of Shaanxi Province

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences

Public Fund of the State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3