Effect of Stem Diameter, Genetics, and Wood Properties on Stem Cracking in Norway Spruce

Author:

Zeltiņš Pauls,Katrevičs Juris,Gailis Arnis,Maaten Tiit,Bāders EndijsORCID,Jansons Āris

Abstract

The choice of seed material (genetics) is one of the tools that can improve adaptation to the changing climate. Insufficient adaptation can result in a number of potential risks, including stem cracking. The goal of this study is to assess the influence of genetics and wood properties on stem cracking in Norway spruce (Picea abies Karst). The study was conducted on a 35-year-old provenance trial in Eastern Latvia. Stem cracks were assessed using a six-score scale. Tree-ring parameters, i.e., latewood proportion, maximum and mean density, mean earlywood, and latewood density were analysed. The overall incidence of stem cracking was 23.5%, varying between 0% and 79% at a family mean level. Heritability of stem cracking was low, ca., two times lower than for the diameter at breast height (DBH): h2 = 0.09 and 0.21, respectively. There were non-significant family and provenance effects on the occurrence of stem cracks, and weak family mean correlations between DBH, and the proportion of trees with any stem cracks or severe stem cracks. Overall, larger trees were more prone to cracking irrespective of provenance or family. Cracked trees had lower wood density parameters than unaffected trees, yet the latewood proportion was similar. Silvicultural treatments or selection to improve wood density could be suggested to reduce the risk of stem cracking.

Publisher

MDPI AG

Subject

Forestry

Reference39 articles.

1. EFISCEN Inventory Database, European Forest Institute, Joensuu, Finlandhttp://www.efi.int/portal/virtual_library/databases/efiscen

2. Norway spruce—Picea abies (L.) Karst;Westin,2013

3. Foreign Norway Spruce (Picea abies) Provenances in Norway and Effects on Biodiversity;Aarrestad,2014

4. Influence of spot mounding on height growth and tending of Norway spruce: case study in Latvia

5. Intra-annual dynamics of height growth of Norway spruce in Latvia;Neimane;Agron. Res.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3