Phenotyping methodologies of log end splitting in eucalyptus (Eucalyptus spp.)

Author:

Soares Luis Carlos da Silva1ORCID,Moreira Jorcélio Cabral2,Botega Gustavo Pucci3,Carneiro Vinicius Quintão1,Lafetá Bruno Oliveira4,de Figueiredo Izabel Cristina Rodrigues5,Gonçalves Flávia Maria Avelar1

Affiliation:

1. Department of Biology Federal University of Lavras Lavras Minas Gerais Brazil

2. Mineiro Agricultural Institute – IMA Uberaba Minas Gerais Brazil

3. Syngenta Seeds Cascavel Paraná Brazil

4. Department of Forestry Sciences São João Evangelista Minas Gerais Brazil

5. Grupo Plantar Curvelo Minas Gerais Brazil

Abstract

AbstractThis study addresses the crucial consideration of log end splitting in breeding programmes for treated wood. There is a paucity of research focused on efficiently optimizing the phenotyping process for this particular trait. The study aimed to compare methodologies for log end splitting phenotyping and develop an image‐based crack evaluation approach. Initially, 32 eucalyptus clones underwent phenotyping using manual measurement, digital image analysis and visual evaluation. Results showed similar phenotypic values, but image analysis demonstrated better clone discrimination, reducing evaluation time to 78 h compared to manual measurement. The second part focused on testing convolutional neural network architectures (UNet, LinkNet and FPN) using real and synthetic images. U‐Net exhibited slight superiority based on higher Intersection over Union (IoU) values, exhibiting a high correlation (.89) with true values. This approach significantly reduced evaluation time to approximately 10.15 h, emphasizing its efficiency compared to traditional methods.

Funder

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3