MFFA-SARNET: Deep Transferred Multi-Level Feature Fusion Attention Network with Dual Optimized Loss for Small-Sample SAR ATR

Author:

Zhai Yikui,Deng WenboORCID,Lan Tian,Sun Bing,Ying Zilu,Gan Junying,Mai Chaoyun,Li Jingwen,Labati Ruggero Donida,Piuri VincenzoORCID,Scotti FabioORCID

Abstract

Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR), most algorithms of which have employed and relied on sufficient training samples to receive a strong discriminative classification model, has remained a challenging task in recent years, among which the challenge of SAR data acquisition and further insight into the intuitive features of SAR images are the main concerns. In this paper, a deep transferred multi-level feature fusion attention network with dual optimized loss, called a multi-level feature attention Synthetic Aperture Radar network (MFFA-SARNET), is proposed to settle the problem of small samples in SAR ATR tasks. Firstly, a multi-level feature attention (MFFA) network is established to learn more discriminative features from SAR images with a fusion method, followed by alleviating the impact of background features on images with the following attention module that focuses more on the target features. Secondly, a novel dual optimized loss is incorporated to further optimize the classification network, which enhances the robust and discriminative learning power of features. Thirdly, transfer learning is utilized to validate the variances and small-sample classification tasks. Extensive experiments conducted on a public database with three different configurations consistently demonstrate the effectiveness of our proposed network, and the significant improvements yielded to surpass those of the state-of-the-art methods under small-sample conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal azimuth angle selection for limited SAR vehicle target recognition;International Journal of Applied Earth Observation and Geoinformation;2024-04

2. Transfer Adaptation Learning for Target Recognition in SAR Images: A Survey;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. LDCL: Low-Confidence Discriminant Contrastive Learning for Small-Sample SAR ATR;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Few-shot SAR image classification: a survey;Journal of Image and Graphics;2024

5. MF-DCMANet: A Multi-Feature Dual-Stage Cross Manifold Attention Network for PolSAR Target Recognition;Remote Sensing;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3