Dual and Single Polarized SAR Image Classification Using Compact Convolutional Neural Networks

Author:

Ahishali MeteORCID,Kiranyaz Serkan,Ince Turker,Gabbouj MoncefORCID

Abstract

Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst posing certain difficulties. For instance, traditional Machine Learning (ML) methods generally focus on finding more discriminative features to overcome the lack of information due to single- or dual-polarimetry. Beside conventional ML approaches, studies proposing deep convolutional neural networks (CNNs) come with limitations and drawbacks such as requirements of massive amounts of data for training and special hardware for implementing complex deep networks. In this study, we propose a systematic approach based on sliding-window classification with compact and adaptive CNNs that can overcome such drawbacks whilst achieving state-of-the-art performance levels for land use/land cover classification. The proposed approach voids the need for feature extraction and selection processes entirely, and perform classification directly over SAR intensity data. Furthermore, unlike deep CNNs, the proposed approach requires neither a dedicated hardware nor a large amount of data with ground-truth labels. The proposed systematic approach is designed to achieve maximum classification accuracy on single and dual-polarized intensity data with minimum human interaction. Moreover, due to its compact configuration, the proposed approach can process such small patches which is not possible with deep learning solutions. This ability significantly improves the details in segmentation masks. An extensive set of experiments over two benchmark SAR datasets confirms the superior classification performance and efficient computational complexity of the proposed approach compared to the competing methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3