Author:
He Jiaxiu,Yang Li,Liu Ding,Song Zhi
Abstract
Background: Epilepsy (Ep) is a chronic neural disease. The diagnosis of epilepsy depends on detailed seizure history and scalp electroencephalogram (EEG) examinations. The automatic recognition of epileptic EEG is an artificial intelligence application developed from machine learning (ML). Purpose: This study compares the classification effects of two kinds of classifiers by controlling the EEG data source and characteristic values. Method: All EEG data were collected by GSN HydroCel 256 leads and high-density EEG from Xiangya Third Hospital. This study used time-domain features (mean, kurtosis and skewness processed by empirical mode decomposition (EMD) and three IMFs), a frequency-domain feature (power spectrum density, PSD) and a non-linear feature (Shannon entropy). Support vector machine (SVM) and gradient-boosting decision tree (GBDT) classifiers were used to recognize epileptic EEG. Result: The result of the SVM classifier showed an accuracy of 72.00%, precision of 73.98%, and an F1_score of 82.28%. Meanwhile, the result of the GBDT classifier showed a sensitivity of 98.57%, precision of 89.13%, F1_score of 93.40%, and an AUC of 0.9119. Conclusion: The comparison of GBDT and SVM by controlling the variables of the feature values and parameters of a classifier is presented. GBDT obtained the better classification accuracy (90.00%) and F1_score (93.40%).
Funder
national nature science foundation of China
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献