A Novel Epilepsy Detection Method Based on Feature Extraction by Deep Autoencoder on EEG Signal

Author:

Huang Xiaojie,Sun Xiangtao,Zhang Lijun,Zhu Tong,Yang Hao,Xiong Qingsong,Feng Lijie

Abstract

Electroencephalogram (EEG) signals are the gold standard tool for detecting epileptic seizures. Long-term EEG signal monitoring is a promising method to realize real-time and automatic epilepsy detection with the assistance of computer-aided techniques and the Internet of Medical Things (IoMT) devices. Machine learning (ML) algorithms combined with advanced feature extraction methods have been widely explored to precisely recognize EEG signals, while among which, little attention has been paid to high computing costs and severe information losses. The lack of model interpretability also impedes the wider application and deeper understanding of ML methods in epilepsy detection. In this research, a novel feature extraction method based on an autoencoder (AE) is proposed in the time domain. The architecture and mechanism are elaborated. In this method, specified features are defined and calculated on the basis of signal reconstruction quantification of the AE. The EEG recognition is performed to validate the effectiveness of the proposed detection method, and the prediction accuracy reached 97%. To further investigate the superiority of the proposed AE-based feature extraction method, a widely used feature extraction method, PCA, is allocated for comparison. In order to understand the underlying working mechanism, permutation importance and SHapley Additive exPlanations (SHAP) are conducted for model interpretability, and the results further confirm the reasonability and effectiveness of the extracted features by AE reconstruction. With high computing efficiency in the time domain and an extensively satisfactory accuracy, the proposed epilepsy detection method exhibits great superiority and potential in almost real-time and automatic epilepsy monitoring.

Funder

Scientific Research Level Promotion Project of Anhui Medical University

Key Project of the University Excellent Talents Support Program in Anhui

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated machine learning with interpretation: A systematic review of methodologies and applications in healthcare;Medicine Advances;2024-08-27

2. Machine Learning for Epilepsy: A Comprehensive Exploration of Novel EEG and MRI Techniques for Seizure Diagnosis;Journal of Medical and Biological Engineering;2024-06

3. Combining EEG Features and Convolutional Autoencoder for Neonatal Seizure Detection;International Journal of Neural Systems;2024-05-14

4. Internet of Medical Things (IoMT) for Premature Estimate of Epileptic Seizures;2023 16th International Conference on Developments in eSystems Engineering (DeSE);2023-12-18

5. Improving Seizure Detection by Integrating Feature Selection and Classification Techniques;2023 7th International Conference on Computer Applications in Electrical Engineering-Recent Advances (CERA);2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3