Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT

Author:

Yin ShanORCID,Wu Yingzhe,Liu YitaoORCID,Pan Xuewei

Abstract

Short-circuit faults are the most critical failure mechanism in power converters. Among the various short-circuit protection schemes, desaturation protection is the most mature and widely used solution. Due to the lack of gate driver integrated circuit (IC) with desaturation protection for the silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET), the conventional insulated gate bipolar transistor (IGBT) driver IC is normally used as these two devices have similar gate structure and driving mechanism. In this work, a gate driver with desaturation protection is designed for the 1.2-kV/30-A SiC MOSFET and silicon (Si) IGBT with the off-the-shelf driver IC. To further limit voltage-overshoot at the rapid turn-off transient, the active clamping circuit is introduced. Based on the experiments of switching characterization and short-circuit test, the SiC MOSFET shows faster switching speed, more serious electromagnetic interference (EMI) issue, lower switching loss (half), and higher short-circuit current (1.6 times) than the Si IGBT, even with a slower gate driver. Thus, a rapid response speed is required for the desaturation protection circuit of SiC MOSFET. Due to the long delay time of the existing desaturation protection scheme, it is technically difficult to design a sub- μ s protection circuit. In this work, an external current source is proposed to charge the blanking capacitor. A short-circuit time of 0.91 μ s is achieved with a reliable protection. Additionally, the peak current is reduced by 22%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Power Electronics: Converters, Applications, and Design;Mohan,2007

2. IGBT Modules: Technologies, Driver and Application;Volke,2011

3. Power Semiconductor Devices;Baliga,1996

4. Performance Evaluation of High-Power SiC MOSFET Modules in Comparison to Si IGBT Modules

5. Development of Si IGBT Phase-Leg Modules for Operation at 200 °C in Hybrid Electric Vehicle Applications

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Switch Fault Diagnosis for DC/DC Boost Converters in Photovoltaic Applications;IEEE Transactions on Industrial Electronics;2024-02

2. System-Based Protection Method for High-Voltage Pulse Generator Switching Units in Biomass Electroporation;Open Research Europe;2024-01-09

3. System-Based Protection Method for High-Voltage Pulse Generator Switching Units in Biomass Electroporation;Open Research Europe;2023-10-12

4. Experiment Result of High Frequency Switching SiC Mosfet Gate Driver;2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE);2022-10-18

5. Current source gate drivers for 3-phase VSI operated in small-scale wind turbine systems;International Journal of Electrical Power & Energy Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3