A Convex Optimization Approach to Multi-Robot Task Allocation and Path Planning

Author:

Lei Tingjun1ORCID,Chintam Pradeep1ORCID,Luo Chaomin1ORCID,Liu Lantao2ORCID,Jan Gene Eu34ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA

2. Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA

3. Department of Electrical Engineering, National Taipei University, New Taipei City 23741, Taiwan

4. Tainan National University of the Arts, Tainan City 72045, Taiwan

Abstract

In real-world applications, multiple robots need to be dynamically deployed to their appropriate locations as teams while the distance cost between robots and goals is minimized, which is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot task allocation and path planning is developed for robot exploration missions through a convex optimization-based distance optimal model. A new distance optimal model is proposed to minimize the traveled distance between robots and their goals. The proposed framework fuses task decomposition, allocation, local sub-task allocation, and path planning. To begin, multiple robots are firstly divided and clustered into a variety of teams considering interrelation and dependencies of robots, and task decomposition. Secondly, the teams with various arbitrary shape enclosing intercorrelative robots are approximated and relaxed into circles, which are mathematically formulated to convex optimization problems to minimize the distance between teams, as well as between a robot and their goals. Once the robot teams are deployed into their appropriate locations, the robot locations are further refined by a graph-based Delaunay triangulation method. Thirdly, in the team, a self-organizing map-based neural network (SOMNN) paradigm is developed to complete the dynamical sub-task allocation and path planning, in which the robots are dynamically assigned to their nearby goals locally. Simulation and comparison studies demonstrate the proposed hybrid multi-robot task allocation and path planning framework is effective and efficient.

Funder

Mississippi Space Grant Consortium

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3