Digital twin‐based multi‐objective autonomous vehicle navigation approach as applied in infrastructure construction

Author:

Lei Tingjun1ORCID,Sellers Timothy1,Luo Chaomin1ORCID,Cao Lei2,Bi Zhuming3

Affiliation:

1. Department of Electrical and Computer Engineering Mississippi State University Mississippi State Mississippi USA

2. Department of Electrical and Computer Engineering University of Mississippi University Mississippi USA

3. Department of Civil and Mechanical Engineering Purdue University Fort Wayne Fort Wayne Indiana USA

Abstract

AbstractThe widespread adoption of autonomous vehicles has generated considerable interest in their autonomous operation, with path planning emerging as a critical aspect. However, existing road infrastructure confronts challenges due to prolonged use and insufficient maintenance. Previous research on autonomous vehicle navigation has focused on determining the trajectory with the shortest distance, while neglecting road construction information, leading to potential time and energy inefficiencies in real‐world scenarios involving infrastructure development. To address this issue, a digital twin‐embedded multi‐objective autonomous vehicle navigation is proposed under the condition of infrastructure construction. The authors propose an image processing algorithm that leverages captured images of the road construction environment to enable road extraction and modelling of the autonomous vehicle workspace. Additionally, a wavelet neural network is developed to predict real‐time traffic flow, considering its inherent characteristics. Moreover, a multi‐objective brainstorm optimisation (BSO)‐based method for path planning is introduced, which optimises total time‐cost and energy consumption objective functions. To ensure optimal trajectory planning during infrastructure construction, the algorithm incorporates a real‐time updated digital twin throughout autonomous vehicle operations. The effectiveness and robustness of the proposed model are validated through simulation and comparative studies conducted in diverse scenarios involving road construction. The results highlight the improved performance and reliability of the autonomous vehicle system when equipped with the authors’ approach, demonstrating its potential for enhancing efficiency and minimising disruptions caused by road infrastructure development.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3