Increasing Trends in Discharge Maxima of a Mediterranean River during Early Autumn

Author:

Varlas George1ORCID,Papadaki Christina1ORCID,Stefanidis Konstantinos1ORCID,Mentzafou Angeliki1ORCID,Pechlivanidis Ilias2ORCID,Papadopoulos Anastasios1ORCID,Dimitriou Elias1ORCID

Affiliation:

1. Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 km of Athens-Sounio Ave., 19013 Anavyssos, Greece

2. Hydrology R&D, Swedish Meteorological and Hydrological Institute, SE-60176 Norrköping, Sweden

Abstract

Climate change has influenced the discharge regime of rivers during the past decades. This study aims to reveal climate-induced interannual trends of average annual discharge and discharge maxima in a Mediterranean river from 1981 to 2017. To this aim, the Pinios river basin was selected as the study area because it is one of the most productive agricultural areas of Greece. Due to a lack of sufficient measurements, simulated daily discharges for three upstream sub-basins were used. The discharge trend analysis was based on a multi-faceted approach using Mann-Kendall tests, Quantile-Kendall plots, and generalized additive models (GAMs) for fitting non-linear interannual trends. The methodological approach proposed can be applied anywhere to investigate climate change effects. The results indicated that the average annual discharge in the three upstream sub-basins decreased in the 1980s, reaching a minimum in the early 1990s, and then increased from the middle 1990s to 2017, reaching approximately the discharge levels of the early 1980s. A more in-depth analysis unraveled that the discharge maxima in September were characterized by statistically significant increasing interannual trends for two of the three sub-basins. These two sub-basins are anthropogenically low affected, thus highlighting the clear impact of climate change that may have critical socioeconomic implications in the Pinios basin.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3