Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer’s Spent Grain and Insect Flours

Author:

Talens ClaraORCID,Llorente Raquel,Simó-Boyle Laura,Odriozola-Serrano IsabelORCID,Tueros ItziarORCID,Ibargüen Mónica

Abstract

The social, environmental and health concerns associated with the massive consumption of meat products has resulted in calls for a reduction in meat consumption. A simplex lattice design was used for studying the effect of combining broccoli, upcycled brewer’s spent grain (BSG) and insect flours from Tenebrio molitor (IF) as alternative sources of protein and micronutrients, in hybrid sausages formulation. The techno-functional properties of the ingredients and the nutritional and textural properties of nine hybrid sausages were analysed. The effect of adding these ingredients (constituting 35% of a turkey-based sausage) on protein, fat, fibre, iron and zinc content, and textural properties (Texture Profile Analysis (TPA) and Warner–Bratzler parameters) were modelled employing linear regression (0.72 < R2 < 1). The “desirability” function was used for multi-response optimisation of the samples for the highest protein content, optimum chewiness and a* value (closeness to red). The analysis of sensory data for the three optimised samples showed no significant differences in juiciness and odour between the hybrid meat sausage with 22% broccoli, 3% BSG, and 10% IF and the commercial Bratwurst sausage elaborated exclusively with animal protein. Colour, appearance, chewiness and pastiness were rated higher than for the reference. The instrumental chewiness highly correlated with sensorial chewiness (R2 = 0.98). Thus, a strategy introducing less refined and more sustainable sources of protein and micronutrients was successfully employed to model and statistically optimise a meat product formulation with reduced animal protein content.

Funder

Spanish Ministry of Science and Innovation

Basque Government

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3