The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese

Author:

Hlebová MiroslavaORCID,Foltinová Denisa,Vešelényiová DominikaORCID,Medo Juraj,Šramková Zuzana,Tančinová Dana,Mrkvová MichaelaORCID,Hleba LukášORCID

Abstract

This study aimed to determine the in vitro and in situ antifungal activity of (14) selected essential oils (EOS), namely clove, thyme, red thyme, litsea, eucalyptus, niaouli, fennel, anise, cumin, basil, rosemary, sage, bergamot mint, and marjoram, by vapor contact against the growth of two strains of Penicillium commune (KMi–183 and KMi–402). Furthermore, to exclude the negative effect of EOs on the lactic acid bacteria (LABs) (Streptococcus spp.) on cheeses, their influence was monitored. Next, the sensory evaluation of cheese treated by EOs was evaluated. The results show that litsea and clove EOs were the most effective in the vapor phase against both tested strains. These EOs were characterized by the highest amount of α- (40.00%) and β-Citral (34.35%) in litsea and eugenol (85.23%) in clove. The antitoxicogenic activity of less effective (in growth inhibition) EOs on cyclopiazonic acid (CPA) production by the tested strains was also observed. The growth of Streptococcus spp. (ranging from 8.11 to 9.69 log CFU/g) was not affected by the EOs in treated cheese. Even though the evaluators recognized some EOs in sensory evaluation by the triangle test, they did not have a negative effect on the taste and smell of the treated cheeses and were evaluated as edible. The antifungal activity of EOs against several types of microscopic fungi and their effect on the sensory properties of treated foods needs to be further tested to achieve the most effective protection of foods from their direct contaminants.

Funder

Operational Programme Integrated Infrastructure for the project: The sustainable systems of intelligent pharming, taking into account future instances

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3