Abstract
The fermentation of traditional vinegar is a spontaneous and complex process that involves interactions among various microorganisms. Here, we used a microbiome approach to determine the effects of networks, such as fermentation temperature, location, physicochemical and sensory characteristics, and bacterial profile, within traditional grain vinegar samples collected from various regions of Korea. Acetic acid and lactic acid were identified as the major metabolites of grain vinegar, and sourness and umami were determined as taste fingerprints that could distinguish between vinegar samples. Acetobacter ghanensis and Lactobacillus acetotolerans were the predominant bacterial species, and the functional composition of the microbiota revealed that the nucleotide biosynthesis pathway was the most enriched. These results reveal that vinegar samples fermented outdoors are more similar to each other than vinegar samples fermented at 30 °C, when comparing the distance matrix for comprehending bacterial networks among samples. This study may help obtain high-quality vinegar through optimized fermentation conditions by suggesting differences in sensory characteristics according to the fermentation environment.
Funder
Research Program for Agricultural Science and Technology Development
National Institute of Agricultural Science, Rural Development Administration, Republic of Korea
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science